Off-Grid Channel Estimation With Sparse Bayesian Learning for OTFS Systems
نویسندگان
چکیده
This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid spreading caused by fractional delay and Doppler shifts to fully exploit sparsity in delay-Doppler (DD) domain, we estimate original DD domain response rather than effective as commonly adopted literature. OTFS is firstly formulated a one-dimensional (1D) signal recovery (SSR) problem based on virtual sampling grid defined space, where on-grid components of are separated estimation. In particular, jointly determined entry indices with significant values recovered vector. Then, corresponding modeled hyper-parameters proposed SBL framework, which can be estimated via expectation-maximization method. strike balance between performance computational complexity, further propose two-dimensional (2D) SSR decoupling shift estimations. our developed 1D 2D SBL-based algorithms, updated alternatively computing conditional posterior distribution channels, exploited reconstruct channel. Compared method, method enjoys much lower complexity while only suffers slight degradation. Simulation results verify superior schemes over state-of-the-art schemes.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملIterative Receiver Design With Off-the-Grid Sparse Channel Estimation
Recent progress in wireless receiver design has been towards iterative processing, where channel estimation and decoding is considered a joint optimization problem. Sparse channel estimation is another recent advancement, which exploits the inherent structure of those wireless channels that are composed of a small number of multipath components. In this work we design iterative receivers which ...
متن کاملUnderdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning
Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...
متن کاملSparse Bayesian Learning for Joint Channel Estimation and Data Detection in OFDM Systems
Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning (SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an eviden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Wireless Communications
سال: 2022
ISSN: ['1536-1276', '1558-2248']
DOI: https://doi.org/10.1109/twc.2022.3158616